The Search for Single Top Quark Production in the μ + Jets Channel at DØ ## Leonard Christofek On behalf of the DØ Collaboration s-channel $\sigma_{\rm NLO} = 0.88 \pm 0.07 \; \rm pb$ t-channel $$\sigma_{\rm NLO} = 1.98 \pm 0.23 \; \rm pb$$ - Tevatron is proton-antiproton collider at center of mass energy of 1.96 TeV - Top quarks are produced and decay through the electroweak interaction - Measure CKM matrix element V_{tb} , observe top quark polarization - Possible process to observe new physics - Event signature: high P_T muon, missing transverse energy (MET), ≥ 2 jets # Backgrounds ## W/Z + jets production - e.g. Wjj, Wcc, Wbb, Zjj, Zcc, many others... - Estimated from data. #### • Multijet production (heavy flavor production) - Jet fluctuates to mimic an isolated μ . - Z → b b for muon channel (≈ 10-16%). - Estimated from data. #### Top pair production - $t\bar{t}$ → dileptons, $t\bar{t}$ → μ + jets. - Estimated from MC. ## • Other $(\mathbf{Z} \to \mu \, \bar{\mu})$ – Estimated from MC ($\approx 11\%$ in soft lepton tagging analysis). W+2 jet production ## **Event Selection** - Run II data set: 158 pb⁻¹ - One high momentum muon: - P_T > 15 GeV ($|\eta|^{\text{detector}}| < 2.0$) - Missing transverse energy: - MET > 15 GeV - At least two jets $(2 \le N_{iet} \le 4)$: - Jet $E_T > 15 \text{ GeV} (\mid \eta \text{ detector} \mid < 3.4)$ - Leading jet $E_T > 25 \text{ GeV} (|\eta|^{\text{detector}}| < 2.5)$ - "Triangle Cuts": - Removes poorly reconstructed events (discussed in e+jets single top talk). - At least one b-tagged jet: - Soft lepton tag (SLT) - Secondary vertex tag (SVX) - Jet Lifetime Impact Probability tag (JLIP) Soft Lepton Tag Secondary Vertex Tag Jet Lifetime Impact Probability Tag - The analyses are split into orthogonal channels: - studied independently, - combined later. - Events are first scanned for a SLT, if a SLT is found then the event is not used in the SVT/JLIP analysis. # Data/MC Comparisons Event yields after preselection. DPF2004 - Riverside Leonard Christofek University of Kansas JLIP $H_T = P_T^{\mu} + MET + \sum E_T(jet) > 150 \text{ GeV}$ (Only use two highest E_T jets in $\sum E_T(jet)$.) H_T distributions for the $e+\mu$ (JLIP + SLT) channel combination. DPF2004 - Riverside Leonard Christofek University of Kansas | Muon Channel | SLT | SVT | JLIP | |--------------|--------------------------|--------------------------|--------------------------| | s+t combined | $0.32 \pm 0.01 \pm 0.03$ | $0.76 \pm 0.01 \pm 0.14$ | $0.79 \pm 0.01 \pm 0.13$ | ## Where do we lose events? - 1. Lepton identification efficiency $\approx 38\%$ - 2. b-tagging efficiency $\approx 50\%$ - 3. Remaining event selection efficiency $\approx 90\%$ | Muon Channel | SLT | SVT | JLIP | |--|----------------|-----------------|-----------------| | Signal | | | | | s+t combined | 1.4 ± 0.3 | 3.5 ± 0.9 | 3.6 ± 0.8 | | Backgrounds | | | | | $t\bar{t} \rightarrow l + \mathrm{jets}$ | 6.1 ± 1.5 | 14.7 ± 3.6 | 14.8 ± 3.8 | | $tar{t}{ ightarrow} ll$ | 2.0 ± 0.4 | 4.3 ± 1.1 | 4.4 ± 1.1 | | $Z \rightarrow \mu \mu + \text{jets}$ | 10.3 ± 3.5 | _ | _ | | W+jets + fake- l sum | 22.4 ± 3.9 | 48.41 ± 8.8 | 60.0 ± 11.4 | | Sum of bkgds for s+t combined | 40.8 ± 6.1 | 67.5 ± 10.0 | 79.2 ± 12.4 | | Observed events | 43 | 75 | 70 | #### Systematic Uncertainties - Largest systematics on the MC signal: jet energy scale, trigger, tagger modeling $\approx 20\%$ - MC background: normalization $\approx 25\%$ - Data backgrounds (W/Z + jet): tagging probability estimate $\approx 20\%$ DPF2004 - Riverside Leonard Christofek University of Kansas ## **Cross Section Limits** | Tagger | Expected | Observed | |--------|----------|----------| | SLT | 45 pb | 49 pb | | SVT | 29 pb | 36 pb | | JLIP | 32 pb | 26 pb | - Cross section limits for s+t channel combined. - Most sensitive tagger is the SVT. - We use the Bayesian method to extract limits. SVT dominates limit calculation due to its larger acceptance. ($$tb = s$$ -channel and $tqb = t$ -channel) ## Conclusions - Using between 156 pb⁻¹ and 169 pb⁻¹ of Run II data taken at DØ, we get the following observed upper limits on single top quark production at a 95% CL ($e+\mu$, SVT+SLT): - 19 pb s-channel, 25 pb t-channel - 23 pb s+t combined - Run I results (95% CL limits, $\approx 110 \text{ pb}^{-1}$, $\sqrt{s} = 1.8 \text{ TeV}$): - DØ: < 17 pb s-channel, < 22 pb t-channel - CDF: < 18 pb s-channel, < 13 pb t-channel, < 14 pb t+s combined - Future plans - Short term (improve b-tagging efficiency, W+jets background estimate and acceptance, use likelihood fitting). - Long term (use Neural Networks to improve signal and background separation). # Backup Slides - We use Bayes theorem to calculate the cross section with a flat prior ("maximum entropy"). - Systematic uncertainties and error correlations are included using a multivariate Gaussian. - We extract an upper limit on the cross section by integrating the posterior probability up to 0.95: - $-\int_0^{\sigma(\text{UL})} \text{Posterior} (\sigma \mid N_{\text{observed}}) = 0.95$ - Computation of the upper limit on the cross section is also done with a Modified Frequentist Method and produces similar results. ## Posterior Distributions SVT dominates limit calculation due to its larger acceptance. (tb = s-channel and tqb = t-channel)